p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.75C23, C23.633C24, C22.4062+ 1+4, (C2×Q8)⋊15D4, C23⋊2D4⋊44C2, C2.36(Q8⋊6D4), C23.10D4⋊98C2, C2.57(C23⋊3D4), (C22×C4).891C23, (C2×C42).684C22, C22.442(C22×D4), C24.3C22⋊90C2, C2.7(C24⋊C22), (C22×D4).259C22, (C22×Q8).202C22, C24.C22⋊149C2, C23.67C23⋊94C2, C2.76(C22.32C24), C2.C42.339C22, C2.37(C22.49C24), (C2×C4).127(C2×D4), (C2×C4.4D4)⋊32C2, (C2×C4).213(C4○D4), (C2×C4⋊C4).446C22, C22.495(C2×C4○D4), (C2×C22⋊C4).296C22, SmallGroup(128,1465)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.633C24
G = < a,b,c,d,e,f,g | a2=b2=c2=1, d2=g2=ba=ab, e2=b, f2=a, ac=ca, ede-1=ad=da, geg-1=ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, gdg-1=abd, fg=gf >
Subgroups: 692 in 296 conjugacy classes, 96 normal (14 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C2×Q8, C24, C2.C42, C2×C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4.4D4, C22×D4, C22×Q8, C24.C22, C24.3C22, C23.67C23, C23⋊2D4, C23.10D4, C2×C4.4D4, C23.633C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, C23⋊3D4, C22.32C24, Q8⋊6D4, C22.49C24, C24⋊C22, C23.633C24
(1 41)(2 42)(3 43)(4 44)(5 62)(6 63)(7 64)(8 61)(9 23)(10 24)(11 21)(12 22)(13 45)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(25 31)(26 32)(27 29)(28 30)(33 39)(34 40)(35 37)(36 38)(53 59)(54 60)(55 57)(56 58)
(1 43)(2 44)(3 41)(4 42)(5 64)(6 61)(7 62)(8 63)(9 21)(10 22)(11 23)(12 24)(13 47)(14 48)(15 45)(16 46)(17 51)(18 52)(19 49)(20 50)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(53 57)(54 58)(55 59)(56 60)
(1 57)(2 58)(3 59)(4 60)(5 20)(6 17)(7 18)(8 19)(9 38)(10 39)(11 40)(12 37)(13 27)(14 28)(15 25)(16 26)(21 34)(22 35)(23 36)(24 33)(29 45)(30 46)(31 47)(32 48)(41 55)(42 56)(43 53)(44 54)(49 63)(50 64)(51 61)(52 62)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 47 43 13)(2 16 44 46)(3 45 41 15)(4 14 42 48)(5 22 64 10)(6 9 61 21)(7 24 62 12)(8 11 63 23)(17 38 51 34)(18 33 52 37)(19 40 49 36)(20 35 50 39)(25 59 29 55)(26 54 30 58)(27 57 31 53)(28 56 32 60)
(1 49 41 17)(2 20 42 52)(3 51 43 19)(4 18 44 50)(5 56 62 58)(6 57 63 55)(7 54 64 60)(8 59 61 53)(9 47 23 15)(10 14 24 46)(11 45 21 13)(12 16 22 48)(25 38 31 36)(26 35 32 37)(27 40 29 34)(28 33 30 39)
(1 45 3 47)(2 48 4 46)(5 37 7 39)(6 40 8 38)(9 17 11 19)(10 20 12 18)(13 43 15 41)(14 42 16 44)(21 51 23 49)(22 50 24 52)(25 55 27 53)(26 54 28 56)(29 59 31 57)(30 58 32 60)(33 62 35 64)(34 61 36 63)
G:=sub<Sym(64)| (1,41)(2,42)(3,43)(4,44)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(25,31)(26,32)(27,29)(28,30)(33,39)(34,40)(35,37)(36,38)(53,59)(54,60)(55,57)(56,58), (1,43)(2,44)(3,41)(4,42)(5,64)(6,61)(7,62)(8,63)(9,21)(10,22)(11,23)(12,24)(13,47)(14,48)(15,45)(16,46)(17,51)(18,52)(19,49)(20,50)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(53,57)(54,58)(55,59)(56,60), (1,57)(2,58)(3,59)(4,60)(5,20)(6,17)(7,18)(8,19)(9,38)(10,39)(11,40)(12,37)(13,27)(14,28)(15,25)(16,26)(21,34)(22,35)(23,36)(24,33)(29,45)(30,46)(31,47)(32,48)(41,55)(42,56)(43,53)(44,54)(49,63)(50,64)(51,61)(52,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,47,43,13)(2,16,44,46)(3,45,41,15)(4,14,42,48)(5,22,64,10)(6,9,61,21)(7,24,62,12)(8,11,63,23)(17,38,51,34)(18,33,52,37)(19,40,49,36)(20,35,50,39)(25,59,29,55)(26,54,30,58)(27,57,31,53)(28,56,32,60), (1,49,41,17)(2,20,42,52)(3,51,43,19)(4,18,44,50)(5,56,62,58)(6,57,63,55)(7,54,64,60)(8,59,61,53)(9,47,23,15)(10,14,24,46)(11,45,21,13)(12,16,22,48)(25,38,31,36)(26,35,32,37)(27,40,29,34)(28,33,30,39), (1,45,3,47)(2,48,4,46)(5,37,7,39)(6,40,8,38)(9,17,11,19)(10,20,12,18)(13,43,15,41)(14,42,16,44)(21,51,23,49)(22,50,24,52)(25,55,27,53)(26,54,28,56)(29,59,31,57)(30,58,32,60)(33,62,35,64)(34,61,36,63)>;
G:=Group( (1,41)(2,42)(3,43)(4,44)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(25,31)(26,32)(27,29)(28,30)(33,39)(34,40)(35,37)(36,38)(53,59)(54,60)(55,57)(56,58), (1,43)(2,44)(3,41)(4,42)(5,64)(6,61)(7,62)(8,63)(9,21)(10,22)(11,23)(12,24)(13,47)(14,48)(15,45)(16,46)(17,51)(18,52)(19,49)(20,50)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(53,57)(54,58)(55,59)(56,60), (1,57)(2,58)(3,59)(4,60)(5,20)(6,17)(7,18)(8,19)(9,38)(10,39)(11,40)(12,37)(13,27)(14,28)(15,25)(16,26)(21,34)(22,35)(23,36)(24,33)(29,45)(30,46)(31,47)(32,48)(41,55)(42,56)(43,53)(44,54)(49,63)(50,64)(51,61)(52,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,47,43,13)(2,16,44,46)(3,45,41,15)(4,14,42,48)(5,22,64,10)(6,9,61,21)(7,24,62,12)(8,11,63,23)(17,38,51,34)(18,33,52,37)(19,40,49,36)(20,35,50,39)(25,59,29,55)(26,54,30,58)(27,57,31,53)(28,56,32,60), (1,49,41,17)(2,20,42,52)(3,51,43,19)(4,18,44,50)(5,56,62,58)(6,57,63,55)(7,54,64,60)(8,59,61,53)(9,47,23,15)(10,14,24,46)(11,45,21,13)(12,16,22,48)(25,38,31,36)(26,35,32,37)(27,40,29,34)(28,33,30,39), (1,45,3,47)(2,48,4,46)(5,37,7,39)(6,40,8,38)(9,17,11,19)(10,20,12,18)(13,43,15,41)(14,42,16,44)(21,51,23,49)(22,50,24,52)(25,55,27,53)(26,54,28,56)(29,59,31,57)(30,58,32,60)(33,62,35,64)(34,61,36,63) );
G=PermutationGroup([[(1,41),(2,42),(3,43),(4,44),(5,62),(6,63),(7,64),(8,61),(9,23),(10,24),(11,21),(12,22),(13,45),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(25,31),(26,32),(27,29),(28,30),(33,39),(34,40),(35,37),(36,38),(53,59),(54,60),(55,57),(56,58)], [(1,43),(2,44),(3,41),(4,42),(5,64),(6,61),(7,62),(8,63),(9,21),(10,22),(11,23),(12,24),(13,47),(14,48),(15,45),(16,46),(17,51),(18,52),(19,49),(20,50),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(53,57),(54,58),(55,59),(56,60)], [(1,57),(2,58),(3,59),(4,60),(5,20),(6,17),(7,18),(8,19),(9,38),(10,39),(11,40),(12,37),(13,27),(14,28),(15,25),(16,26),(21,34),(22,35),(23,36),(24,33),(29,45),(30,46),(31,47),(32,48),(41,55),(42,56),(43,53),(44,54),(49,63),(50,64),(51,61),(52,62)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,47,43,13),(2,16,44,46),(3,45,41,15),(4,14,42,48),(5,22,64,10),(6,9,61,21),(7,24,62,12),(8,11,63,23),(17,38,51,34),(18,33,52,37),(19,40,49,36),(20,35,50,39),(25,59,29,55),(26,54,30,58),(27,57,31,53),(28,56,32,60)], [(1,49,41,17),(2,20,42,52),(3,51,43,19),(4,18,44,50),(5,56,62,58),(6,57,63,55),(7,54,64,60),(8,59,61,53),(9,47,23,15),(10,14,24,46),(11,45,21,13),(12,16,22,48),(25,38,31,36),(26,35,32,37),(27,40,29,34),(28,33,30,39)], [(1,45,3,47),(2,48,4,46),(5,37,7,39),(6,40,8,38),(9,17,11,19),(10,20,12,18),(13,43,15,41),(14,42,16,44),(21,51,23,49),(22,50,24,52),(25,55,27,53),(26,54,28,56),(29,59,31,57),(30,58,32,60),(33,62,35,64),(34,61,36,63)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4R | 4S | 4T |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 8 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 | 2+ 1+4 |
kernel | C23.633C24 | C24.C22 | C24.3C22 | C23.67C23 | C23⋊2D4 | C23.10D4 | C2×C4.4D4 | C2×Q8 | C2×C4 | C22 |
# reps | 1 | 4 | 2 | 1 | 4 | 2 | 2 | 4 | 8 | 4 |
Matrix representation of C23.633C24 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 3 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 3 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[2,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,3,2,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,3,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,3,4,0,0,0,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,0,4] >;
C23.633C24 in GAP, Magma, Sage, TeX
C_2^3._{633}C_2^4
% in TeX
G:=Group("C2^3.633C2^4");
// GroupNames label
G:=SmallGroup(128,1465);
// by ID
G=gap.SmallGroup(128,1465);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,336,253,232,758,723,100,1571,346,192]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=1,d^2=g^2=b*a=a*b,e^2=b,f^2=a,a*c=c*a,e*d*e^-1=a*d=d*a,g*e*g^-1=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g^-1=a*b*d,f*g=g*f>;
// generators/relations