Copied to
clipboard

G = C23.633C24order 128 = 27

350th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.75C23, C23.633C24, C22.4062+ 1+4, (C2×Q8)⋊15D4, C232D444C2, C2.36(Q86D4), C23.10D498C2, C2.57(C233D4), (C22×C4).891C23, (C2×C42).684C22, C22.442(C22×D4), C24.3C2290C2, C2.7(C24⋊C22), (C22×D4).259C22, (C22×Q8).202C22, C24.C22149C2, C23.67C2394C2, C2.76(C22.32C24), C2.C42.339C22, C2.37(C22.49C24), (C2×C4).127(C2×D4), (C2×C4.4D4)⋊32C2, (C2×C4).213(C4○D4), (C2×C4⋊C4).446C22, C22.495(C2×C4○D4), (C2×C22⋊C4).296C22, SmallGroup(128,1465)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.633C24
C1C2C22C23C22×C4C2×C42C24.C22 — C23.633C24
C1C23 — C23.633C24
C1C23 — C23.633C24
C1C23 — C23.633C24

Generators and relations for C23.633C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=1, d2=g2=ba=ab, e2=b, f2=a, ac=ca, ede-1=ad=da, geg-1=ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, gdg-1=abd, fg=gf >

Subgroups: 692 in 296 conjugacy classes, 96 normal (14 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C2×Q8, C24, C2.C42, C2×C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4.4D4, C22×D4, C22×Q8, C24.C22, C24.3C22, C23.67C23, C232D4, C23.10D4, C2×C4.4D4, C23.633C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, C233D4, C22.32C24, Q86D4, C22.49C24, C24⋊C22, C23.633C24

Smallest permutation representation of C23.633C24
On 64 points
Generators in S64
(1 41)(2 42)(3 43)(4 44)(5 62)(6 63)(7 64)(8 61)(9 23)(10 24)(11 21)(12 22)(13 45)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(25 31)(26 32)(27 29)(28 30)(33 39)(34 40)(35 37)(36 38)(53 59)(54 60)(55 57)(56 58)
(1 43)(2 44)(3 41)(4 42)(5 64)(6 61)(7 62)(8 63)(9 21)(10 22)(11 23)(12 24)(13 47)(14 48)(15 45)(16 46)(17 51)(18 52)(19 49)(20 50)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(53 57)(54 58)(55 59)(56 60)
(1 57)(2 58)(3 59)(4 60)(5 20)(6 17)(7 18)(8 19)(9 38)(10 39)(11 40)(12 37)(13 27)(14 28)(15 25)(16 26)(21 34)(22 35)(23 36)(24 33)(29 45)(30 46)(31 47)(32 48)(41 55)(42 56)(43 53)(44 54)(49 63)(50 64)(51 61)(52 62)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 47 43 13)(2 16 44 46)(3 45 41 15)(4 14 42 48)(5 22 64 10)(6 9 61 21)(7 24 62 12)(8 11 63 23)(17 38 51 34)(18 33 52 37)(19 40 49 36)(20 35 50 39)(25 59 29 55)(26 54 30 58)(27 57 31 53)(28 56 32 60)
(1 49 41 17)(2 20 42 52)(3 51 43 19)(4 18 44 50)(5 56 62 58)(6 57 63 55)(7 54 64 60)(8 59 61 53)(9 47 23 15)(10 14 24 46)(11 45 21 13)(12 16 22 48)(25 38 31 36)(26 35 32 37)(27 40 29 34)(28 33 30 39)
(1 45 3 47)(2 48 4 46)(5 37 7 39)(6 40 8 38)(9 17 11 19)(10 20 12 18)(13 43 15 41)(14 42 16 44)(21 51 23 49)(22 50 24 52)(25 55 27 53)(26 54 28 56)(29 59 31 57)(30 58 32 60)(33 62 35 64)(34 61 36 63)

G:=sub<Sym(64)| (1,41)(2,42)(3,43)(4,44)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(25,31)(26,32)(27,29)(28,30)(33,39)(34,40)(35,37)(36,38)(53,59)(54,60)(55,57)(56,58), (1,43)(2,44)(3,41)(4,42)(5,64)(6,61)(7,62)(8,63)(9,21)(10,22)(11,23)(12,24)(13,47)(14,48)(15,45)(16,46)(17,51)(18,52)(19,49)(20,50)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(53,57)(54,58)(55,59)(56,60), (1,57)(2,58)(3,59)(4,60)(5,20)(6,17)(7,18)(8,19)(9,38)(10,39)(11,40)(12,37)(13,27)(14,28)(15,25)(16,26)(21,34)(22,35)(23,36)(24,33)(29,45)(30,46)(31,47)(32,48)(41,55)(42,56)(43,53)(44,54)(49,63)(50,64)(51,61)(52,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,47,43,13)(2,16,44,46)(3,45,41,15)(4,14,42,48)(5,22,64,10)(6,9,61,21)(7,24,62,12)(8,11,63,23)(17,38,51,34)(18,33,52,37)(19,40,49,36)(20,35,50,39)(25,59,29,55)(26,54,30,58)(27,57,31,53)(28,56,32,60), (1,49,41,17)(2,20,42,52)(3,51,43,19)(4,18,44,50)(5,56,62,58)(6,57,63,55)(7,54,64,60)(8,59,61,53)(9,47,23,15)(10,14,24,46)(11,45,21,13)(12,16,22,48)(25,38,31,36)(26,35,32,37)(27,40,29,34)(28,33,30,39), (1,45,3,47)(2,48,4,46)(5,37,7,39)(6,40,8,38)(9,17,11,19)(10,20,12,18)(13,43,15,41)(14,42,16,44)(21,51,23,49)(22,50,24,52)(25,55,27,53)(26,54,28,56)(29,59,31,57)(30,58,32,60)(33,62,35,64)(34,61,36,63)>;

G:=Group( (1,41)(2,42)(3,43)(4,44)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(25,31)(26,32)(27,29)(28,30)(33,39)(34,40)(35,37)(36,38)(53,59)(54,60)(55,57)(56,58), (1,43)(2,44)(3,41)(4,42)(5,64)(6,61)(7,62)(8,63)(9,21)(10,22)(11,23)(12,24)(13,47)(14,48)(15,45)(16,46)(17,51)(18,52)(19,49)(20,50)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(53,57)(54,58)(55,59)(56,60), (1,57)(2,58)(3,59)(4,60)(5,20)(6,17)(7,18)(8,19)(9,38)(10,39)(11,40)(12,37)(13,27)(14,28)(15,25)(16,26)(21,34)(22,35)(23,36)(24,33)(29,45)(30,46)(31,47)(32,48)(41,55)(42,56)(43,53)(44,54)(49,63)(50,64)(51,61)(52,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,47,43,13)(2,16,44,46)(3,45,41,15)(4,14,42,48)(5,22,64,10)(6,9,61,21)(7,24,62,12)(8,11,63,23)(17,38,51,34)(18,33,52,37)(19,40,49,36)(20,35,50,39)(25,59,29,55)(26,54,30,58)(27,57,31,53)(28,56,32,60), (1,49,41,17)(2,20,42,52)(3,51,43,19)(4,18,44,50)(5,56,62,58)(6,57,63,55)(7,54,64,60)(8,59,61,53)(9,47,23,15)(10,14,24,46)(11,45,21,13)(12,16,22,48)(25,38,31,36)(26,35,32,37)(27,40,29,34)(28,33,30,39), (1,45,3,47)(2,48,4,46)(5,37,7,39)(6,40,8,38)(9,17,11,19)(10,20,12,18)(13,43,15,41)(14,42,16,44)(21,51,23,49)(22,50,24,52)(25,55,27,53)(26,54,28,56)(29,59,31,57)(30,58,32,60)(33,62,35,64)(34,61,36,63) );

G=PermutationGroup([[(1,41),(2,42),(3,43),(4,44),(5,62),(6,63),(7,64),(8,61),(9,23),(10,24),(11,21),(12,22),(13,45),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(25,31),(26,32),(27,29),(28,30),(33,39),(34,40),(35,37),(36,38),(53,59),(54,60),(55,57),(56,58)], [(1,43),(2,44),(3,41),(4,42),(5,64),(6,61),(7,62),(8,63),(9,21),(10,22),(11,23),(12,24),(13,47),(14,48),(15,45),(16,46),(17,51),(18,52),(19,49),(20,50),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(53,57),(54,58),(55,59),(56,60)], [(1,57),(2,58),(3,59),(4,60),(5,20),(6,17),(7,18),(8,19),(9,38),(10,39),(11,40),(12,37),(13,27),(14,28),(15,25),(16,26),(21,34),(22,35),(23,36),(24,33),(29,45),(30,46),(31,47),(32,48),(41,55),(42,56),(43,53),(44,54),(49,63),(50,64),(51,61),(52,62)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,47,43,13),(2,16,44,46),(3,45,41,15),(4,14,42,48),(5,22,64,10),(6,9,61,21),(7,24,62,12),(8,11,63,23),(17,38,51,34),(18,33,52,37),(19,40,49,36),(20,35,50,39),(25,59,29,55),(26,54,30,58),(27,57,31,53),(28,56,32,60)], [(1,49,41,17),(2,20,42,52),(3,51,43,19),(4,18,44,50),(5,56,62,58),(6,57,63,55),(7,54,64,60),(8,59,61,53),(9,47,23,15),(10,14,24,46),(11,45,21,13),(12,16,22,48),(25,38,31,36),(26,35,32,37),(27,40,29,34),(28,33,30,39)], [(1,45,3,47),(2,48,4,46),(5,37,7,39),(6,40,8,38),(9,17,11,19),(10,20,12,18),(13,43,15,41),(14,42,16,44),(21,51,23,49),(22,50,24,52),(25,55,27,53),(26,54,28,56),(29,59,31,57),(30,58,32,60),(33,62,35,64),(34,61,36,63)]])

32 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4R4S4T
order12···222224···444
size11···188884···488

32 irreducible representations

dim1111111224
type+++++++++
imageC1C2C2C2C2C2C2D4C4○D42+ 1+4
kernelC23.633C24C24.C22C24.3C22C23.67C23C232D4C23.10D4C2×C4.4D4C2×Q8C2×C4C22
# reps1421422484

Matrix representation of C23.633C24 in GL6(𝔽5)

400000
040000
001000
000100
000010
000001
,
100000
010000
004000
000400
000010
000001
,
100000
010000
001000
000100
000040
000004
,
200000
030000
003300
000200
000010
000001
,
010000
100000
002000
000200
000040
000001
,
300000
030000
001000
003400
000001
000010
,
010000
400000
003000
004200
000040
000004

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[2,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,3,2,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,3,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,3,4,0,0,0,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,0,4] >;

C23.633C24 in GAP, Magma, Sage, TeX

C_2^3._{633}C_2^4
% in TeX

G:=Group("C2^3.633C2^4");
// GroupNames label

G:=SmallGroup(128,1465);
// by ID

G=gap.SmallGroup(128,1465);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,336,253,232,758,723,100,1571,346,192]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=1,d^2=g^2=b*a=a*b,e^2=b,f^2=a,a*c=c*a,e*d*e^-1=a*d=d*a,g*e*g^-1=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g^-1=a*b*d,f*g=g*f>;
// generators/relations

׿
×
𝔽